An On-line Fisher Discriminant
نویسندگان
چکیده
Many applications in signal processing need an adaptive algorithm. Adaptive schemes are useful when the statistics of the problem are unknown or when facing varying environments. Nonetheless, many of these applications deal with classification tasks, and most algorithms are not specifically thought to tackle these kinds of problems. Whereas Fisher’s criterion aimed to find the most adequate direction to discriminate classes in a stationary setting, the newly proposed On-line Fisher Linear Discriminant (OFLD) is able to adaptively update its parameters maintaining its discrimination goal. The algorithm has been tested in an equalization problem for several conditions.
منابع مشابه
Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملRobust Fisher Discriminant Analysis
Fisher linear discriminant analysis (LDA) can be sensitive to the problem data. Robust Fisher LDA can systematically alleviate the sensitivity problem by explicitly incorporating a model of data uncertainty in a classification problem and optimizing for the worst-case scenario under this model. The main contribution of this paper is show that with general convex uncertainty models on the proble...
متن کاملRapid and Brief Communication A novel method for Fisher discriminant analysis
A novel model for Fisher discriminant analysis is developed in this paper. In the new model, maximal Fisher criterion values of discriminant vectors and minimal statistical correlation between feature components extracted by discriminant vectors are simultaneously required. Then the model is transformed into an extreme value problem, in the form of an evaluation function. Based on the evaluatio...
متن کاملAdaptive Quasiconformal Kernel Fisher Discriminant Analysis via Weighted Maximum Margin Criterion
Kernel Fisher discriminant analysis (KFD) is an effective method to extract nonlinear discriminant features of input data using the kernel trick. However, conventional KFD algorithms endure the kernel selection problem as well as the singular problem. In order to overcome these limitations, a novel nonlinear feature extraction method called adaptive quasiconformal kernel Fisher discriminant ana...
متن کاملNovel Fisher discriminant classifiers
At the present, several applications need to classify high dimensional points belonging to highly unbalanced classes. Unfortunately, when the training set cardinality is small compared to the data dimensionality (‘‘small sample size’’ problem) the classification performance of several well-known classifiers strongly decreases. Similarly, the classification accuracy of several discriminative met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005